Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 689
Filtrar
1.
Front Pharmacol ; 15: 1343896, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38562457

RESUMO

Cardiovascular disease is a leading cause of death. The current approach to the prevention of arterial thrombosis in cardiovascular disease is dependent on the use of therapies which inhibit the activation of platelets. Predictably these are associated with an increased risk of haemorrhage which causes significant morbidity. The thrombotic potential of an activated platelet is modifiable; being determined before thrombopoiesis. Increased megakaryocyte ploidy is associated with larger and more active platelets carrying an increased risk of thrombosis. The reduction in the ploidy of megakaryocytes is therefore a novel area of therapeutic interest for reducing thrombosis. We propose a new therapeutic approach for the prevention and treatment of thrombosis by targeting the reduction in ploidy of megakaryocytes. We examine the role of a receptor mediated event causing megakaryocytes to increase ploidy, the potential for targeting the molecular mechanisms underpinning megakaryocyte endomitosis and the existence of two separate regulatory pathways to maintain haemostasis by altering the thrombotic potential of platelets as targets for novel therapeutic approaches producing haemostatically competent platelets which are not prothrombotic.

2.
Evol Appl ; 17(4): e13689, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38633131

RESUMO

Arctic and subarctic ecosystems are rapidly transforming due to global warming, emphasizing the need to understand the genetic diversity and adaptive strategies of northern plant species for effective conservation. This study focuses on Betula glandulosa, a native North American tundra shrub known as dwarf birch, which demonstrates an apparent capacity to adapt to changing climate conditions. To address the taxonomic challenges associated with shrub birches and logistical complexities of sampling in the northernmost areas where species' ranges overlap, we adopted a multicriteria approach. Incorporating molecular data, ploidy level assessment and leaf morphology, we aimed to distinguish B. glandulosa individuals from other shrub birch species sampled. Our results revealed three distinct species and their hybrids within the 537 collected samples, suggesting the existence of a shrub birch syngameon, a reproductive network of interconnected species. Additionally, we identified two discrete genetic clusters within the core species, B. glandulosa, that likely correspond to two different glacial lineages. A comparison between the nuclear and chloroplast SNP data emphasizes a long history of gene exchange between different birch species and genetic clusters. Furthermore, our results highlight the significance of incorporating interfertile congeneric species in conservation strategies and underscores the need for a holistic approach to conservation in the context of climate change, considering the complex dynamics of species interactions. While further research will be needed to describe this shrub birches syngameon and its constituents, this study is a first step in recognizing its existence and disseminating awareness among ecologists and conservation practitioners. This biological phenomenon, which offers evolutionary flexibility and resilience beyond what its constituent species can achieve individually, may have significant ecological implications.

3.
Genetics ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38651869

RESUMO

Ploidy is relevant to numerous biological phenomena, including development, metabolism, and tissue regeneration. Single-cell RNA-seq and other omics studies are revolutionizing our understanding of biology, yet they have largely overlooked ploidy. This is likely due to the additional assay step required for ploidy measurement. Here, we developed a statistical method to infer ploidy from single-cell ATAC-seq data, addressing this gap. When applied to data from human and mouse cell atlases, our method enabled systematic detection of polyploidy across diverse cell types. This method allows for the integration of ploidy analysis into single-cell studies. Additionally, this method can be adapted to detect the proliferating stage in the cell cycle and copy number variations in cancer cells. The software is implemented as the scPloidy package of the R software and is freely available from CRAN.

4.
Front Plant Sci ; 15: 1328966, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550287

RESUMO

Extensive research has focused on exploring the range of genome sizes in eukaryotes, with a particular emphasis on land plants, where significant variability has been observed. Accurate estimation of genome size is essential for various research purposes, but existing sequence-based methods have limitations, particularly for low-coverage datasets. In this study, we introduce LocoGSE, a novel genome size estimator designed specifically for low-coverage datasets generated by genome skimming approaches. LocoGSE relies on mapping the reads on single copy consensus proteins without the need for a reference genome assembly. We calibrated LocoGSE using 430 low-coverage Angiosperm genome skimming datasets and compared its performance against other estimators. Our results demonstrate that LocoGSE accurately predicts monoploid genome size even at very low depth of coverage (<1X) and on highly heterozygous samples. Additionally, LocoGSE provides stable estimates across individuals with varying ploidy levels. LocoGSE fills a gap in sequence-based plant genome size estimation by offering a user-friendly and reliable tool that does not rely on high coverage or reference assemblies. We anticipate that LocoGSE will facilitate plant genome size analysis and contribute to evolutionary and ecological studies in the field. Furthermore, at the cost of an initial calibration, LocoGSE can be used in other lineages.

5.
J Fish Biol ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553987

RESUMO

The study investigated if gonad maturation in triploid brown trout, Salmo trutta, was entirely suppressed or only delayed, and if triploids could interbreed with diploid counterparts. Ten percent of the total number of 3-year-old triploid S. trutta, 15% of 4-year-old fish, and 17% of 5-year-old fish produced semen. Three and 4 years old triploid fish did not produce eggs, but 15% of the 5-year-old fish did so. The quantity and sperm motility of triploid semen did not differ from diploids, but the sperm concentration was significantly lower. When diploid eggs were fertilized with triploid semen (3n × 2n crosses), the percentage of eyed stage embryos, of hatched larvae, and of normal-shaped larvae did not differ from the diploid controls. Circa 90% of 3n × 2n crosses had a ploidy level of 2.4n. In the remaining percentage of 3n × 2n crosses, the ploidy level was ≥2n and <2.4n. In sperm competition experiments where diploid eggs were fertilized with a mixture of diploid and triploid semen, 52% of the originating larvae had a ploidy level of 2n, 43% of 2.4n, and 5% of the fish were not exactly classified. From the start of feeding to an age of 248 days, the mortality rate of 3n × 2n interploid crosses and of 2n × 2n controls was similar. The growth of interploid crosses was significantly higher than that of controls. In triploid mature females, the egg mass per kilogram of body weight was significantly lower than in diploids. The mass of the non-hardened eggs and the percentile weight increase during hardening did not differ from diploid eggs. When triploid eggs were fertilized with diploid semen (2n × 3n crosses), the development rate to normal hatched larvae was less than 10%. All originating larvae had a ploidy level of 3n. From the start of feeding to an age of 248 days, 2n × 3n crosses had a higher mortality rate (15%) than diploid controls (<5%). Growth of this type of interploid crosses was reduced in comparison to controls. Therefore, triploids introduced into natural waters for recreational fisheries or escaping from farms may interbreed with diploid counterparts. This not only alters the genotypes of local populations but also changes the ploidy levels.

6.
Genes (Basel) ; 15(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38540363

RESUMO

A-genome Arachis species (AA; 2n = 2x = 20) are commonly used as secondary germplasm sources in cultivated peanut breeding, Arachis hypogaea L. (AABB; 2n = 4x = 40), for the introgression of various biotic and abiotic stress resistance genes. Genome doubling is critical to overcoming the hybridization barrier of infertility that arises from ploidy-level differences between wild germplasm and cultivated peanuts. To develop improved genome doubling methods, four trials of various concentrations of the mitotic inhibitor treatments colchicine, oryzalin, and trifluralin were tested on the seedlings and seeds of three A-genome species, A. cardenasii, A. correntina, and A. diogoi. A total of 494 seeds/seedlings were treated in the present four trials, with trials 1 to 3 including different concentrations of the three chemical treatments on seedlings, and trial 4 focusing on the treatment period of 5 mM colchicine solution treatment of seeds. A small number of tetraploids were produced from the colchicine and oryzalin gel treatments of seedlings, but all these tetraploid seedlings reverted to diploid or mixoploid states within six months of treatment. In contrast, the 6-h colchicine solution treatment of seeds showed the highest tetraploid conversion rate (6-13% of total treated seeds or 25-40% of surviving seedlings), and the tetraploid plants were repeatedly tested as stable tetraploids. In addition, visibly and statistically larger leaves and flowers were produced by the tetraploid versions of these three species compared to their diploid versions. As a result, stable tetraploid plants of each A-genome species were produced, and a 5 mM colchicine seed treatment is recommended for A-genome and related wild Arachis species genome doubling.


Assuntos
Arachis , Dinitrobenzenos , Fabaceae , Sulfanilamidas , Arachis/genética , Tetraploidia , Genoma de Planta , Poliploidia , Melhoramento Vegetal , Fabaceae/genética , Colchicina/farmacologia
7.
Am J Bot ; : e16298, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433501

RESUMO

PREMISE: Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes. METHODS: We used a plant-soil feedback (PSF) experiment to test whether host-specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host-specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. RESULTS: Seedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. CONCLUSIONS: This is the first evidence, to our knowledge, that is consistent with plant-soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.

8.
Curr Opin Plant Biol ; 78: 102527, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484440

RESUMO

Cell size affects many processes, including exchange of nutrients and external signals, cell division and tissue mechanics. Across eukaryotes, cells have evolved mechanisms that assess their own size to inform processes such as cell cycle progression or gene expression. Here, we review recent progress in understanding plant cell size regulation and its implications, relating these findings to work in other eukaryotes. Highlights include use of DNA contents as reference point to control the cell cycle in shoot meristems, a size-dependent cell fate decision during stomatal development and insights into the interconnection between ploidy, cell size and cell wall mechanics.


Assuntos
Células Vegetais , Plantas , Ciclo Celular/genética , Divisão Celular , Diferenciação Celular/genética , Plantas/genética , Ploidias , Tamanho Celular , Regulação da Expressão Gênica de Plantas/genética
9.
Genome Biol ; 25(1): 62, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438920

RESUMO

Cancer cells often exhibit DNA copy number aberrations and can vary widely in their ploidy. Correct estimation of the ploidy of single-cell genomes is paramount for downstream analysis. Based only on single-cell DNA sequencing information, scAbsolute achieves accurate and unbiased measurement of single-cell ploidy and replication status, including whole-genome duplications. We demonstrate scAbsolute's capabilities using experimental cell multiplets, a FUCCI cell cycle expression system, and a benchmark against state-of-the-art methods. scAbsolute provides a robust foundation for single-cell DNA sequencing analysis across different technologies and has the potential to enable improvements in a number of downstream analyses.


Assuntos
Benchmarking , Ploidias , Ciclo Celular/genética , Divisão Celular , Análise de Sequência de DNA
10.
Plants (Basel) ; 13(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475481

RESUMO

The main aim of the present study has been the completion of genome size data for the diverse arctic-alpine A. ciliata species complex, with special focus on the unexplored arctic taxon A. pseudofrigida, the north-European A. norvegica, and A. gothica from Gotland (Sweden). Altogether, 46 individuals of these three Nordic taxa have been sampled from seven different regions and their genome size estimated using flow cytometry. Three other alpine taxa in the A. ciliata complex (A. multicaulis, A. ciliata subsp. ciliata, and A. ciliata subsp. bernensis) were also collected and analyzed for standardization purposes, comprising 20 individuals from six regions. A mean 2c value of 1.65 pg of DNA was recorded for A. pseudofrigida, 2.80 pg for A. norvegica, and 4.14 pg for A. gothica, as against the reconfirmed 2c value of 1.63 pg DNA for the type taxon A. ciliata subsp. ciliata. Our results presenting the first estimations of genome sizes for the newly sampled taxa, corroborate ploidy levels described in the available literature, with A. pseudofrigida being tetraploid (2n = 4x = 40), A. norvegica possessing predominantly 2n = 8x = 80, and A. gothica with 2n = 10x = 100. The present study also reconfirms genome size and ploidy level estimations published previously for the alpine members of this species complex. Reflecting a likely complex recent biogeographic history, the A. ciliata species group comprises a polyploid arctic-alpine species complex characterized by reticulate evolution, polyploidizations and hybridizations, probably associated with rapid latitudinal and altitudinal migrations in the Pleistocene-Holocene period.

11.
Syst Biol Reprod Med ; 70(1): 52-58, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38426509

RESUMO

The aim of this study was to non-invasively investigate euploid embryos using methods other than pre-implantation genetic testing for aneuploidy. The study focused on direct cleavage (DC) observed during early embryo development. We also investigated the relationship between the mode of early embryo division and embryo ploidy. Embryos were divided into the normal cleavage (NC) and DC groups, and the DC group was further subdivided into the DC-First (DC-F) and DC-Second (DC-S) groups, depending on whether DC was observed at the first or second cleavage, respectively. The acquisition rates of euploid embryos and embryos appropriate for transfer were compared between the groups. Our results revealed that the timing of the first division did not differ between blastocyst grades or in embryos with varying degrees of ploidy. Further, the timing of the first cleavage did not affect the acquisition rate of embryos appropriate for transfer and euploid embryo formation rate did not significantly differ between the DC and NC groups. We also noted that for embryos appropriate for transfer, euploidy acquisition rate did not differ significantly between the DC and NC groups. Further, the euploidy acquisition rate of embryos did not differ between the DC-F and DC-S groups. However, the acquisition rate of embryos appropriate for transfer, including those with low mosaicism, was significantly higher in the DC-S group than in the DC-F group. These findings indicated that the number of good-quality blastocysts formed was significantly higher in the NC group than in the DC group and the acquisition rate of embryos appropriate for transfer, including those with low mosaicism, was significantly higher in the DC-S group than in the DC-F group.


Assuntos
Diagnóstico Pré-Implantação , Gravidez , Feminino , Humanos , Diagnóstico Pré-Implantação/métodos , Estudos Retrospectivos , Implantação do Embrião , Desenvolvimento Embrionário , Aneuploidia , Testes Genéticos , Blastocisto , Mosaicismo
12.
Genes (Basel) ; 15(2)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38397240

RESUMO

Rapid climate changes, with higher warming rates during winter and spring seasons, dramatically affect the vernalization requirements, one of the most critical processes for the induction of wheat reproductive growth, with severe consequences on flowering time, grain filling, and grain yield. Specifically, the Vrn genes play a major role in the transition from vegetative to reproductive growth in wheat. Recent advances in wheat genomics have significantly improved the understanding of the molecular mechanisms of Vrn genes (Vrn-1, Vrn-2, Vrn-3, and Vrn-4), unveiling a diverse array of natural allelic variations. In this review, we have examined the current knowledge of Vrn genes from a functional and structural point of view, considering the studies conducted on Vrn alleles at different ploidy levels (diploid, tetraploid, and hexaploid). The molecular characterization of Vrn-1 alleles has been a focal point, revealing a diverse array of allelic forms with implications for flowering time. We have highlighted the structural complexity of the different allelic forms and the problems linked to the different nomenclature of some Vrn alleles. Addressing these issues will be crucial for harmonizing research efforts and enhancing our understanding of Vrn gene function and evolution. The increasing availability of genome and transcriptome sequences, along with the improvements in bioinformatics and computational biology, offers a versatile range of possibilities for enriching genomic regions surrounding the target sites of Vrn genes, paving the way for innovative approaches to manipulate flowering time and improve wheat productivity.


Assuntos
Triticum , 60485 , Triticum/genética , Alelos , Tetraploidia , Fenótipo
13.
Biosci Biotechnol Biochem ; 88(4): 412-419, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38412471

RESUMO

The regeneration of shoots from endosperm tissue is a highly effective method to obtain triploid plants. In this study, we elucidated the establishment of an in vitro regeneration system from endosperm culture for the production of Passiflora edulis "Mantianxing." The highest callus induction rate (83.33%) was obtained on the media supplemented with 1.0 mg/L TDZ. Meanwhile, the MS medium containing 1.0 mg/L 6-BA and 0.4 mg/L IBA gave the optimum 75% shoot bud induction. Chromosome analysis revealed that the chromosomal count of P. edulis "Mantianxing" regenerated from endosperm tissues was 27 (2n = 3x = 27), which indicated that shoots regenerated from endosperm tissues were triploids. Triploid P. edulis had more drought resistance than diploid plants. Our study provided a method for breeding of passion fruit by means of a stable and reproducible regeneration system from endosperm culture, leading to the generation of triploid plants.


Assuntos
Passiflora , Triploidia , Brotos de Planta , Endosperma , Melhoramento Vegetal , Regeneração/genética
14.
J Oral Pathol Med ; 53(1): 70-78, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163857

RESUMO

BACKGROUND: Ameloblastoma and ameloblastic carcinoma are epithelial odontogenic tumors that can be morphologically similar. In the present study, we evaluated the DNA content and Ki-67 index in the two tumors. METHODS: The paraffin blocks of the tumors were selected to obtain sections for the immunohistochemical reactions and preparation of the cell suspension for acquisition in a flow cytometer. The Random Forest package of the R software was used to verify the contribution of each variable to classify lesions into ameloblastoma or ameloblastic carcinoma. RESULTS: Thirty-two ameloblastoma and five ameloblastic carcinoma were included in the study. In our sample, we did not find statistically significant differences in Ki-67 labeling rates. A higher fraction of cells in 2c (G1) was correlated with the diagnosis of ameloblastoma, whereas higher rates of 5c-exceeding rate (5cER) were correlated with ameloblastic carcinoma. The Random Forest model highlighted histopathological findings and parameters of DNA ploidy study as important features for distinguishing ameloblastoma from ameloblastic carcinoma. CONCLUSION: Our findings suggest that the parameters of the DNA ploidy study can be ancillary tools in the classification of ameloblastoma and ameloblastic carcinoma.


Assuntos
Ameloblastoma , Carcinoma , Tumores Odontogênicos , Humanos , Ameloblastoma/diagnóstico , Ameloblastoma/genética , Ameloblastoma/patologia , Antígeno Ki-67/genética , Tumores Odontogênicos/genética , Carcinoma/patologia , Ploidias , DNA
15.
BMC Oral Health ; 24(1): 9, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172857

RESUMO

BACKGROUND: Topical photodynamic therapy (PDT) has demonstrated encouraging results in the treatment of oral leukoplakia (OLK). However, data on the clinical efficacy of PDT in Chinese patients with OLK are still limited. METHODS: Fifty patients diagnosed with OLK were enrolled, including patients with various dysplastic tissues. All patients received topical PDT with 5-aminolevulinic acid (5-ALA) as a photosensitizer. Clinical efficacy was evaluated 4 weeks after treatment. Follow-up was performed every 3 months during the first year and every 6 months during the second year. RESULTS: The overall response rate was 68% (34/50): 12% (n = 6) complete and 56% (n = 28) partial responses. Aneuploidy was reduced in the patients with dysplastic lesions. Oral pain and local ulcers developed in 52% of the patients (n = 26). Patients with a long history of OLK including hyperplasia and dysplastic lesions, as well as those with non-homogenous lesions, were more likely to develop pain and ulcer. During follow-up, the recurrence rate of hyperplasia and dysplastic lesions was 32% (n = 16) and the malignant transformation rate of dysplastic lesions was 4% (n = 2). Lesions on the buccal mucosa were associated with recurrence (P = 0.044; OR: 0.108, 95% CI: 0.013-0.915). CONCLUSION: Topical 5-ALA-mediated PDT is an effective treatment for OLK, particularly for homogenous leukoplakia, with few side effects. The buccal mucosa may be a protective factor that can reduce recurrence.


Assuntos
Fotoquimioterapia , Humanos , Estudos Retrospectivos , Fotoquimioterapia/efeitos adversos , Fotoquimioterapia/métodos , Hiperplasia/tratamento farmacológico , Hiperplasia/etiologia , Leucoplasia Oral/tratamento farmacológico , Fármacos Fotossensibilizantes/uso terapêutico , Ácido Aminolevulínico/uso terapêutico , Dor/etiologia
16.
Plant J ; 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38281284

RESUMO

Endoreduplication, during which cells increase their DNA content through successive rounds of full genome replication without cell division, is the major source of endopolyploidy in higher plants. Endoreduplication plays pivotal roles in plant growth and development and is associated with the activation of specific transcriptional programmes that are characteristic of each cell type, thereby defining their identity. In plants, endoreduplication is found in numerous organs and cell types, especially in agronomically valuable ones, such as the fleshy fruit (pericarp) of tomato presenting high ploidy levels. We used the tomato pericarp tissue as a model system to explore the transcriptomes associated with endoreduplication progression during fruit growth. We confirmed that expression globally scales with ploidy level and identified sets of differentially expressed genes presenting only developmental-specific, only ploidy-specific expression patterns or profiles resulting from an additive effect of ploidy and development. When comparing ploidy levels at a specific developmental stage, we found that non-endoreduplicated cells are defined by cell division state and cuticle synthesis while endoreduplicated cells are mainly defined by their metabolic activity changing rapidly over time. By combining this dataset with publicly available spatiotemporal pericarp expression data, we proposed a map describing the distribution of ploidy levels within the pericarp. These transcriptome-based predictions were validated by quantifying ploidy levels within the pericarp tissue. This in situ ploidy quantification revealed the dynamic progression of endoreduplication and its cell layer specificity during early fruit development. In summary, the study sheds light on the complex relationship between endoreduplication, cell differentiation and gene expression patterns in the tomato pericarp.

17.
Hum Reprod ; 39(1): 53-61, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37963011

RESUMO

STUDY QUESTION: Are morphokinetic models better at prioritizing a euploid embryo for transfer over morphological selection by an embryologist? SUMMARY ANSWER: Morphokinetic algorithms lead to an improved prioritization of euploid embryos when compared to embryologist selection. WHAT IS KNOWN ALREADY: PREFER (predicting euploidy for embryos in reproductive medicine) is a previously published morphokinetic model associated with live birth and miscarriage. The second model uses live birth as the target outcome (LB model). STUDY DESIGN, SIZE, DURATION: Data for this cohort study were obtained from 1958 biopsied blastocysts at nine IVF clinics across the UK from January 2021 to December 2022. PARTICIPANTS/MATERIALS, SETTING, METHODS: The ability of the PREFER and LB models to prioritize a euploid embryo was compared against arbitrary selection and the prediction of four embryologists using the timelapse video, blinded to the morphokinetic time stamp. The comparisons were made using calculated percentages and normalized discounted cumulative gain (NDCG), whereby an NDCG score of 1 would equate to all euploid embryos being ranked first. In arbitrary selection, the ploidy status was randomly assigned within each cycle and the NDGC calculated, and this was then repeated 100 times and the mean obtained. MAIN RESULTS AND THE ROLE OF CHANCE: Arbitrary embryo selection would rank a euploid embryo first 37% of the time, embryologist selection 39%, and the LB and PREFER ploidy morphokinetic models 46% and 47% of the time, respectively. The AUC for LB and PREFER model was 0.62 and 0.63, respectively. Morphological selection did not significantly improve the performance of both morphokinetic models when used in combination. There was a significant difference between the NDGC metric of the PREFER model versus embryologist selection at 0.96 and 0.87, respectively (t = 14.1, P < 0.001). Similarly, there was a significant difference between the LB model and embryologist selection with an NDGC metric of 0.95 and 0.87, respectively (t = 12.0, P < 0.001). All four embryologists ranked embryos similarly, with an intraclass coefficient of 0.91 (95% CI 0.82-0.95, P < 0.001). LIMITATIONS, REASONS FOR CAUTION: Aside from the retrospective study design, limitations include allowing the embryologist to watch the time lapse video, potentially providing more information than a truly static morphological assessment. Furthermore, the embryologists at the participating centres were familiar with the significant variables in time lapse, which could bias the results. WIDER IMPLICATIONS OF THE FINDINGS: The present study shows that the use of morphokinetic models, namely PREFER and LB, translates into improved euploid embryo selection. STUDY FUNDING/COMPETING INTEREST(S): This study received no specific grant funding from any funding agency in the public, commercial or not-for-profit sectors. Dr Alison Campbell is minor share holder of Care Fertility. All other authors have no conflicts of interest to declare. Time lapse is a technology for which patients are charged extra at participating centres. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Blastocisto , Gravidez Múltipla , Gravidez , Feminino , Humanos , Estudos Retrospectivos , Estudos de Coortes , Aneuploidia
18.
J Appl Genet ; 65(1): 1-11, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37934380

RESUMO

Apart from apomictic types, the Polygonum-type eight-nuclear embryo sac is considered to be dominant in grasses. A triploid endosperm is formed as a result of double fertilisation. This study showed, for the first time, the dominance of diploid nuclei in the syncytial stage of the central cell of embryo sac in oat species and amphiploids. The dominance of diploid nuclei, which were the basis for the formation of polyploid nuclei, was weaker in amphiploids due to aneuploid events. The genomic in situ hybridisation method applied in the study did not distinguish the maternal and paternal haploid nuclei of embryo sac. However, this method demonstrated the lack of a set of genomes of one haploid nucleus. Embryological analyses of the initial stages of oat endosperm development revealed a fertilised egg cell, and two polar nuclei differing in size. It can be assumed that the formation of diploid oat endosperm occurred after the fusion of one polar nucleus and the nucleus of a male gamete, while the second polar nucleus gave rise to 1n nuclei. The levels of ploidy of syncytial nuclei were not influenced by both aneuploid events and correlated with pollen developmental anomalies. The differences in the analysed cytogenetic events distinguished amphiploids and their parental species in the ordination space.


Assuntos
Diploide , Endosperma , Endosperma/genética , Avena/genética , Ploidias , Aneuploidia
19.
Protoplasma ; 261(2): 227-243, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37665420

RESUMO

Monoterpenes are the main component in essential oils of Lippia alba. In this species, the chemical composition of essential oils varies with genome size: citral (geraniol and neral) is dominant in diploids and tetraploids, and linalool in triploids. Because environmental stress impacts various metabolic pathways, we hypothesized that stress responses in L. alba could alter the relationship between genome size and essential oil composition. Water stress affects the flowering, production, and reproduction of plants. Here, we evaluated the effect of water stress on morphophysiology, essential oil production, and the expression of genes related to monoterpene synthesis in diploid, triploid, and tetraploid accessions of L. alba cultivated in vitro for 40 days. First, using transcriptome data, we performed de novo gene assembly and identified orthologous genes using phylogenetic and clustering-based approaches. The expression of candidate genes related to terpene biosynthesis was estimated by real-time quantitative PCR. Next, we assessed the expression of these genes under water stress conditions, whereby 1% PEG-4000 was added to MS medium. Water stress modulated L. alba morphophysiology at all ploidal levels. Gene expression and essential oil production were affected in triploid accessions. Polyploid accessions showed greater growth and metabolic tolerance under stress compared to diploids. These results confirm the complex regulation of metabolic pathways such as the production of essential oils in polyploid genomes. In addition, they highlight aspects of genotype and environment interactions, which may be important for the conservation of tropical biodiversity.


Assuntos
Monoterpenos Acíclicos , Lippia , Óleos Voláteis , Verbenaceae , Lippia/genética , Lippia/química , Triploidia , Desidratação , Filogenia , Óleos Voláteis/química
20.
J Biosci Bioeng ; 137(2): 77-84, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38135639

RESUMO

Polyploid (2n, 3n, and 4n) genomes are known to be unstable in Saccharomyces cerevisiae. Here, we attempted construction of super-polypoid strains (defined as having higher ploidy than tetraploidy) up to 32n by using the matα2-PBT method that we newly developed and investigated their genomic stability. It is known that cell size increases as ploidy increases up to tetraploid. However, unexpectedly, there was no change in the average cell size of the super-polyploid strains compared with tetraploid or pentaploid strains. Smaller sized cells were observed at a rather higher frequency in super-polyploid cell populations compared with those of diploid, triploid and tetraploid strains, suggesting that ploidy reduction in super-polyploid strains occurs quickly at a relatively high frequency. Assuming that ploidy reduction occurs through chromosome loss (or non-disjunction) during mitotic growth, we also estimated the frequency of chromosome loss (or non-disjunction) in various polyploid strains. Our results indicated that the frequency of chromosome loss (or non-disjunction) is drastically increased (10-2-10-3/cells plated) in super-polyploid strains compared with that (10-4-10-5/cells plated) of conventional polyploid (2n-4n) strains. This is the first attempt of construction of super-polyploid strains and investigation of their genomic stability in S. cerevisiae. We believe that the matα2-PBT method will be an invaluable tool for investigating a variety of interesting issues regarding polyploidy and their genomic characterization in eukaryotes.


Assuntos
Saccharomyces cerevisiae , Tetraploidia , Humanos , Saccharomyces cerevisiae/genética , Poliploidia , Diploide , Instabilidade Genômica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...